Geo-temporal distribution of tag terms for event-related image retrieval

نویسندگان

  • Massimiliano Ruocco
  • Heri Ramampiaro
چکیده

Media sharing applications, such as Flickr and Panoramio, contain a large amount of pictures related to real life events. For this reason, the development of effective methods to retrieve these pictures is important, but still a challenging task. Recognizing this importance, and to improve the retrieval effectiveness of tag-based event retrieval systems, we propose a new method to extract a set of geographical tag features from raw geo-spatial profiles of user tags. The main idea is to use these features to select the best expansion terms in a machine learning-based query expansion approach. Specifically, we apply rigorous statistical exploratory analysis of spatial point patterns to extract the geo-spatial features. We use the features both to summarize the spatial characteristics of the spatial distribution of a single term, and to determine the similarity between the spatial profiles of two terms – i.e., term-to-term spatial similarity. To further improve our approach, we investigate the effect of combining our geo-spatial features with temporal features on choosing the expansion terms. To evaluate our method, we perform several experiments, including well-known feature analyses. Such analyses show how much our proposed geo-spatial features contribute to improve the overall retrieval performance. The results from our experiments demonstrate the effectiveness and viability of our method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiautomatic Image Retrieval Using the High Level Semantic Labels

Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...

متن کامل

I2RS: A Distributed Geo-Textual Image Retrieval and Recommendation System

Massive amounts of geo-tagged and textually annotated images are provided by online photo services such as Flickr and Zommr. However, most existing image retrieval engines only consider text annotations. We present I2RS, a system that allows users to view geo-textual images on Google Maps, find hot topics within a specific geographic region and time period, retrieve images similar to a query im...

متن کامل

Image Tag Recommendation via Deep Cross-Modal Correlation Mining

In this paper, a novel image tag recommendation framework is developed by fusing the deep multimodal feature representation and cross-modal correlation mining, which enables the most appropriate and relevant tags to be presented on the image and facilitates more accurate image retrieval. Such an image tag recommendation pattern can be modeled as an inter-related correlation distribution over de...

متن کامل

Content Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram

Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a  database. In medical applications, CBIR is a tool used by physicians to compare the previous and current  medical images associated with patients pathological conditions. As the volume of pictorial information  stored in medical image databases is in progress, efficient image indexing and retri...

متن کامل

Tags Re-ranking Using Multi-level Features in Automatic Image Annotation

Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Manage.

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2015